Dietary patterns of a crop pest mammal species (Mastomys natalensis) inhabiting agro-field-protected area interface in Western Serengeti, Tanzania

Pestiferous mammalian species in the Western Serengeti, Tanzania


  • Egidius Rwebuga Sokoine University of Agriculture
  • Shombe N. Hassan Sokoine University of Agriculture
  • Loth S. Mulungu
  • Alfan A. Rija



Dietary breadth, selectivity index , feeding , habitat heterogeneity , rodents , seasonality , Western Serengeti


Rodent pest control is challenging because of complex dynamics of their populations. We investigated the influence of seasons and habitats on food categories and diet breadth of Mastomys natalensis (Smith, 1834) through analysing 107 stomachs collected in Kijereshi Game Reserve and Nyamikoma village in western Serengeti-Tanzania, using kill traps.  Plant materials (41%) and invertebrates (39.1%) dominated the animal’s diet in different seasons and habitats. Numerically, during the wet season, invertebrates dominated in the fallow land (90.0%) followed by the wooded grassland (83.3%) and maize crop fields (76.2). Plant materials were in large quantity in maize crop fields (27.6%) and least in in the wooded grassland (16.7%). Furthermore, seeds/grains were eaten more in maize crop fields (20.7%) as compared to fallow land (19.3%) and the wooded grassland (6.9 %). In contrast, in the dry season, plant materials occurred at a higher frequency in maize crop fields (85.7%) followed by fallow land (60%) and lastly the wooded grassland (50%).  Seed/grain featured more in the diet in maize crop field (75%) followed by fallow land (44.4%) and lastly by the wooded grassland (36.4%). Invertebrates occurred with higher frequency in the wooded grassland (72.7%) followed by fallow land (66.7%) and lastly by maize crop fields (58.3%). Statistical tests on the effects of habitats and seasonality on the dietary patterns of M. natalensis, revealed non- significant effect of each individual variable respectively (p = 0.43) and (p= 0.81) respectively. Effect of seasonality and habitats on M. natalensis food categories were observed on plant materials but not in seeds/grains and invertebrates. The animal ate plant materials and seeds/grains substantially in the maize crop fields, suggesting that it is a potential pest. Therefore, combined management actions are needed which include clearance of bushy fallow lands and rodenticides application but preventively and remedially when there is a need

Author Biography

Shombe N. Hassan, Sokoine University of Agriculture



Ajayi, A. F., & Akhigbe, R. E. (2020). Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertility Research and Practice, 6(1), 1–15.

Belsky A. J. (1986). Revegetation of artificial disturbances in grasslands of the Serengeti National Park, Tanzania. 1. Colonization of grazed and ungrazed plots. In J. Ecol. (Vol. 74).

Capizzi, D., Bertolino, S., & Mortelliti, A. (2014). Rating the rat: Global patterns and research priorities in impacts and management of rodent pests. Mammal Review, 44(2), 148–162.

Chowdhury, M. Z. I., & Turin, T. C. (2020). Variable selection strategies and its importance in clinical prediction modelling. Family Medicine and Community Health, 8(1).

Cooper, R. L. and J. D. S. (1978). Importance of termites in the diet of the aardwolf Proteles cristatus in South Africa. South Africa Journal of Zoology, 14, 5–8.

Delany, M. J. (1964). A study of the ecology and breeding of small mammals in Uganda. Proceedings of the Zoological Society of London, 142, 347–370.

Dippenaar, N. J., Swanepoel, P. and Gordon, D. H. . (1993). Diagnostic morphometrics of two medically important southern African rodents, Mastomys natalensis and M. coucha (Rodentia: Muridae). South African Journal of Science, 89, 300–303.

Ebersole, J. P. (1977). Experiments of optimal foraging in Peromyscus. In: Crowder L ed, Ecology Lab Experiences, An Ideas Forum.

Ebersole, J. P., & Wilson, J. C. (1980). Optimal Foraging: The Responses of Peromyscus leucopus to Experimental Changes in Processing Time and Hunger. In Oecologia (Berl.) (Vol. 46).

Emlen, J. M. . (1968). Optimal choice in animals. Am. Natur., 102, 385–390.

Feinsinger, P., Spears, E. E., & Poole, R. W. (1981). A Simple Measure of Niche Breadth. In Source: Ecology (Vol. 62, Issue 1).

Gómez, J. M. (2004). Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution, 58(1).

Imakando, C. I., Fernández-Grandon, G. M., Singleton, G. R., & Belmain, S. R. (2022). Impact of fertility versus mortality control on the demographics of Mastomys natalensis in maize fields. Integrative Zoology, 17(6), 1028–1040.

Kilwanila, S. I., Msalya, G. M., Lyimo, C. M., & Rija, A. A. (2021). Geographic biases in cane rat (Thryonomyds) research may impede broader wildlife utilization and conservation in Africa: A systematic review. In Scientific African (Vol. 12).

Krebs, C. J. (1989). ‘Niche Overlaps and Diet Analysis. Ecological Methodology.’ (Harper and Row: New York, NY.).

Krebs, C. J. (2001). Ecology: The experimental analysis of distribution and abundance (5th ed.). xBenjamin Cummings.

Kronfeld, Noga and Dayan, T. (1998). A new method of determining diets of rodents. Journal of Mammalogy, 79(4), 1198–1202.

Kwok, A. B. C., & Eldridge, D. J. (2015). Does fire affect the ground-dwelling arthropod community through changes to fine-scale resource patches? International Journal of Wildland Fire, 24(4), 550–559.

Lack, P. C. (1986). Diurnal and seasonal variation in biomass of arthropods in Tsavo East National Park, Kenya. African Journal of Ecology, 24, 47–51.

Leirs, H., Verheyen, W. (1995). Population Ecology of Mastomys natalensis (Smith, 1834). Implications for Rodent Control in Africa.’ Agricultural Editions No. 35.

Leirs, H. (1995). Population ecology of Mastomys natalensis (Smith 1834): implication for rodent control in East Africa.

Levins, R. (. (1968). ‘Evolution in Changing Environments.’ (Princeton University Press: Princeton, NJ.

MacArthur, R. H., & Pianka, E. R. (1966). On Optimal Use of a Patchy Environment. The American Naturalist, 100(916), 603–609.

Makundi, R. H., Massawe, A. W., Mulungu, L. S. and Katakweba, A., Mlyashimbi, E. C. M., Ngowo, V., Mdangi, M., Katakweba, A. S., Tesha, P., Mrosso, F. P., Mchomvu, M., Kilonzo, B. S., & Belmain, S. R. (2014). Food preferences of the multi-mammate mouse, Mastomys natalensis, in irrigated rice habitats in Tanzania. International Journal of Pest Management, 60(1), 1–8.

Makundi, R. H., Massawe, A. W., & Mulungu, L. S. (2007). Reproduction and population dynamics of Mastomys natalensis Smith, 1834 in an agricultural landscape in the Western Usambara Mountains, Tanzania. Integrative Zoology, 2(4), 233–238.

Makundi, R. H., Oguge, N. O., & Mwanjabe, P. S. (1999). Rodent pest management in East Africa - an ecological approach. Ecologically-Based Rodent Management, 460–476.

Massawe, A. W., Makundi, R. H., Zhang, Z., Mhamphi, G., Liu, M., Li, H. J., & Belmain, S. R. (2018). Effect of synthetic hormones on reproduction in Mastomys natalensis. Journal of Pest Science, 91(1), 157–168.

Mdangi, M. (2009). Assessment of rodent damage to maize (Zea mays L.) in the field and stores at Berega Village, in Kilosa District Tanzania. Masters Thesis, Sokoine University of Agriculture, Morogoro, Tanzania.

Mlyashimbi, E. C. M., Mariën, J., Kimaro, D. N., Tarimo, A. J. P., Isabirye, M., Makundi, R. H., Massawe, A. W., Mdangi, M. E., Kifumba, D., Nakiyemba, A., Leirs, H., Belmain, S. R., & Mulungu, L. S. (2018). Relationships between seasonal changes in diet of Multimammate rat (Mastomys natalensis) and its breeding patterns in semi-arid areas in Tanzania. Cogent Food and Agriculture, 4(1).

Mohtasebi, S., Teimouri, A., Abbaszadeh Afshar, M. J., Mobedi, I., Abbasian, H., Totonchian, N., & Mowlavi, G. (2021). First report of Spirocerca lupi larva in dung beetles (Scarabaeus armeniacus) in the central region of Iran: A morphological and molecular identification. Comparative Immunology, Microbiology and Infectious Diseases, 77, 1–16.

Monadjem, A., & Perrin, M. (2003). Population fluctuations and community structure of small mammals in a Swaziland grassland over a three-year period. African Zoology, 38(1), 127–137.

Monath, T. P. (1975). Lassafever: review of epidemiology and epizootiology. Bulletin WHO, 52, 577–592.

Mulungu, L. S., Mahlaba, T. A., Massawe, A. W., Kennis, J., Crauwels, D., Eiseb, S., Monadjem, A., Makundi, R. H., Katakweba, A. A. S., Leirs, H., & Belmain, S. R. (2011). Dietary differences of the multimammate mouse, Mastomys natalensis (Smith, 1834), across different habitats and seasons in Tanzania and Swaziland. Wildlife Research, 38(7), 640–646.

Mulungu, L. S., Mlyashimbi, E. C. M., Ngowo, V., Mdangi, M., Katakweba, A. S., Tesha, P., Mrosso, F. P., Mchomvu, M., Kilonzo, B. S., & Belmain, S. R. (2014). Food preferences of the multi-mammate mouse, Mastomys natalensis, in irrigated rice habitats in Tanzania. International Journal of Pest Management, 60(1), 1–8.

Mwasapi, B. S., & Rija, A. A. (2022). Local habitat characteristics influence abundance and community structure of rodents in a regenerating Lulanda reserved forest, southern Tanzania. Restoration Ecology, 30(1), 1–10.

Neal, B. R. (1996). Reproductive response of Tatera leucogaster (Rodentia) to supplemental food, water, and 6-methoxybenzoxazolinone. Mammalia, 60, 651–666.

Norton-Griffiths, D. H. and L. P. Ennycuik. (1975). The patterns of rainfall in the Serengeti Ecosystem, Tanzania. E. Afr. Wildl. J, 13(3–34), 347–314.

Odhiambo, R. O., Makundi, R. H., Leirs, H., & Verhagen, R. (2008a). Dietary selection in Mastomys natalensis (Rodentia: Muridae) in the maize agro-ecosystems of central and southwestern Tanzania. Mammalia, 72(3), 169–177.

Odhiambo, R. O., Makundi, R. H., Leirs, H., & Verhagen, R. (2008b). Dietary selection in Mastomys natalensis (Rodentia: Muridae) in the maize agro-ecosystems of central and southwestern Tanzania. Mammalia, 72(3), 169–177.

Oliveira, V. A. (2010). Seasonality of insects in the semi-arid Caatinga of northeastern Brazil.

Pulliam, H. R. (1974). On the Theory of Optimal Diets. The American Naturalist, 108(959), 59–74.

Pyke, G. H. . (1976). Optimal foraging, the marginal value theorem.pdf. 752(4), 739–752.

Randolph, J. C., & Cameron, G. N. (2001). Consequences of diet choice by a small generalist herbivore. Ecological Monographs, 71(1), 117–136.[0117:CODCBA]2.0.CO;2

Reynolds, J. C., & Aebischer, N. J. (1991). Comparison and quantification of carnivore diet by faecal analysis: a critique, with recommendations, based on a study of the Fox Vulpes vulpes. Mammal Review, 21(3), 97–122.

Rija, A. A. (2021). Local Habitat Characteristics Determine Buttery Diversity and Community Structure in a Threatened Kihansi Gorge Forest, Southern Udzungwa Mountains, Tanzania.

Ropper, T. J., & Mickevicius, E. (1995). Badger Meles meles diet: a review of literature from the former Soviet Union. Mammal Review, 25(3), 117–129.

Rowsey, D. M., Keenan, R. M., & Jansa, S. A. (2020). Dietary morphology of two island-endemic murid rodent clades is consistent with persistent, incumbent-imposed competitive interactions. Proceedings of the Royal Society B: Biological Sciences, 287(1921).

Rwebuga, E. J., Mulungu, L. S., Rija, A. A., Hassan, S. N., Development, T., & Centre, M. (2023). Ecological correlates of population abundance of a pest small mammal species ( Mastomys natalensis ) inhabiting a protected area-farmland landscape in western. 92(1), 159–169.

Schoener, T. W. (1968). The Anolis Lizards of Bimini : Resource Partitioning in a Complex Fauna Author ( s ): Thomas W . Schoener Published by : Wiley Stable URL : REFERENCES Linked references are available on JSTOR for this article : You may. Ecological Society of America, 49(4), 704–726.

Selemani, M., Makundi, R. H., Massawe, A. W., Mhamphi, G., Mulungu, L. S., & Belmain, S. R. (2022). Impact of contraceptive hormones on the reproductive potential of male and female commensal black rats (Rattus rattus). Integrative Zoology, 17(6), 991–1001.

Sih, A. (1977). . Optimal foraging theory used to deduce the energy available in the environment. Biotropica, 9, 216.

Skoglund, J. (1992). The role of seed banks in vegetation dynamics and restoration of dry tropical ecosystems. Journal of Vegetation Science, 3(3).

Smith, V. R., Avenant, N. L., & Chown, S. L. (2002). The diet and impact of house mice on a sub-Antarctic island. Polar Biology, 25(9), 703–715.

Symonds, M. R. E., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. In Behavioral Ecology and Sociobiology (Vol. 65, Issue 1, pp. 13–21). Springer Verlag.

Team, R. C. (2021). A language and environment for statistical computing.

Thirgood, S., Mosser, A., Tham, S., Hopcraft, G., Mwangomo, E., Mlengeya, T., Kilewo, M., Fryxell, J., Sinclair, A. R. E., & Borner, M. (2004). Can parks protect migratory ungulates? The case of the Serengeti wildebeest. Animal Conservation, 7(2), 113–120.

Vezzosi, R. I., Eberhardt, A. T., Raimondi, V. B., Gutierrez, M. F., & Pautasso, A. A. (2014). Seasonal variation in the diet of Lontra longicaudis in the Paraná River basin, Argentina. Mammalia, 78(4), 451–463.

Wondifraw B.T, M. Y. T. and A. . S. (2021). Assessment of crop damage by rodent pests from experimental barley crop fields in Farta District, South Gondar, Ethiopia. PLoS ONE, 16(8), e0255372.

Wright, J. P., Jones, C. G., & Flecker, A. S. (2002). An ecosystem engineer , the beaver , increases species richness at the landscape scale. 96–101.




How to Cite

Rwebuga, E., Hassan, S. N., Mulungu, L. S., & Rija , A. A. (2023). Dietary patterns of a crop pest mammal species (Mastomys natalensis) inhabiting agro-field-protected area interface in Western Serengeti, Tanzania: Pestiferous mammalian species in the Western Serengeti, Tanzania. Sustainability and Biodiversity Conservation, 2(2), 32–52.