Carbon sequestration by terrestrial and marine biodiversity- a tool for combating climate change

Authors

  • Shahnoor Khan CSIR-National Environmental Engineering Research Institute (NEERI)
  • Sharda Dhadse CSIR-NEERI

DOI:

https://doi.org/10.5281/zenodo.15623594

Keywords:

carbon, sequestration, trees, soil, flora, marine, planktons, carbonate

Abstract

Carbon sequestration by terrestrial and marine biodiversity is a critical mechanism for mitigating climate change. This paper explores the significant role of diverse ecosystems, including forests, grasslands, wetlands, seagrasses, mangroves, and salt marshes, in capturing and storing carbon. Terrestrial ecosystems act as substantial carbon sinks through processes such as photosynthesis, organic matter decomposition, and soil carbon storage, with grasslands being particularly noteworthy. Coastal blue carbon ecosystems, including seagrasses, mangroves, and salt marshes, efficiently trap and store carbon in marine environments. Marine biodiversity, encompassing coral reefs and plankton, also contributes to carbon sequestration through various mechanisms. Despite their importance, these ecosystems face threats from climate change and human activities. Preserving and restoring biodiversity in both terrestrial and marine environments is crucial for maintaining their capacity to sequester carbon and, consequently, for global climate change mitigation. This review underscores the urgent need to prioritize conservation efforts aimed at safeguarding these invaluable ecosystems for the benefit of the planet's climate and biodiversity.

Author Biography

Shahnoor Khan, CSIR-National Environmental Engineering Research Institute (NEERI)

Project Assosiate at EIA Vertical, CSIR-NEERI, Nagpur

References

Adams, M. A., &Pfautsch, S. (2018). Grand challenges: forests and global change. Frontiers in Forests and Global Change, 1, 1.

Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual review of marine science, 6, 195-219.

Alongi, D. M., &Mukhopadhyay, S. K. (2015). Contribution of mangroves to coastal carbon cycling in low-latitude seas. Agricultural and forest meteorology, 213, 266-272.

Atwood, T. B., Connolly, R. M., Ritchie, E. G., Lovelock, C. E., Heithaus, M. R., Hays, G. C., ... &Macreadie, P. I. (2015). Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change, 5(12), 1038-1045.

Averill, C., &Waring, B. (2018). Nitrogen limitation of decomposition and decay: how can it occur?. Global change biology, 24(4), 1417-1427.

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., & Houghton, R. A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360), 230-234.

Bai, Y., &Cotrufo, M. F. (2022). Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 377(6606), 603-608.

Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., ...&Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76-79.

Bates, A., & Draper, K. (2019). Burn: using fire to cool the earth. Chelsea Green Publishing.

Beaumont, N. J., Austen, M. C., Atkins, J. P., Burdon, D., Degraer, S., Dentinho, T. P., ...&Zarzycki, T. (2007). Identification, definition and quantification of goods and services provided by marine biodiversity: implications for the ecosystem approach. Marine pollution bulletin, 54(3), 253-265.

Berthrong, S. T., Jobbágy, E. G., & Jackson, R. B. (2009). A global meta‐analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological applications, 19(8), 2228-2241.

Biggers, J. (2015). Iowa's Climate-Change Wisdom. The New York Times. November, 21.

Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. science, 320(5882), 1444-1449.

Bouillon, S., & Connolly, R. M. (2009). Carbon exchange among tropical coastal ecosystems. Ecological connectivity among tropical coastal ecosystems, 45-70.

Braun, M., Winner, G., Schwarzbauer, P., & Stern, T. (2016). Apparent half-life-dynamics of harvested wood products (HWPs) in Austria: Development and analysis of weighted time-series for 2002 to 2011. Forest Policy and Economics, 63, 28-34.

Canadell, J. G., &Raupach, M. R. (2008). Managing forests for climate change mitigation. science, 320(5882), 1456-1457.

Chen, G., Yang, Y., Yang, Z., Xie, J., Guo, J., Gao, R., ...& Robinson, D. (2016). Accelerated soil carbon turnover under tree plantations limits soil carbon storage. Scientific reports, 6(1), 19693.

Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils.Global biogeochemical cycles, 17(4).

Churkina, G., Organschi, A., Reyer, C. P., Ruff, A., Vinke, K., Liu, Z., ...&Schellnhuber, H. J. (2020). Buildings as a global carbon sink. Nature Sustainability, 3(4), 269-276.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., ...& Thornton, P. (2014). Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465-570). Cambridge University Press.

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The M icrobial E fficiency‐M atrix S tabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?. Global change biology, 19(4), 988-995.

Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., ... & Bradford, M. A. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201-205.

Cyronak, T., Schulz, K. G., &Jokiel, P. L. (2016). The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES Journal of Marine Science, 73(3), 558-562.

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., &Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature geoscience, 4(5), 293-297.

Duarte, C. M., & Krause-Jensen, D. (2017). Export from seagrass meadows contributes to marine carbon sequestration. Frontiers in Marine Science, 4, 13.

Dungait, J. A., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18(6), 1781-1796.

Feely, R. A., Sabine, C. L., Takahashi, T., &Wanninkhof, R. (2001). Uptake and storage of carbon dioxide in the ocean: The global co~ 2 survey. Oceanography-Washington Dc-Oceanography Society-, 14(4), 18-32.

Gorte, R. W. (2009). Carbon sequestration in forests. DIANE Publishing.

Groom, M. J., Gray, E. M., & Townsend, P. A. (2008). Biofuels and biodiversity: principles for creating better policies for biofuel production. Conservation biology, 22(3), 602-609.

Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton, T. I., Derry, L. A., &Galy, V. V. (2019). Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 570(7760), 228-231.

Honisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., ...& Williams, B. (2012). The geological record of ocean acidification.science, 335(6072), 1058-1063.

Hunt, C. A. (2009). Carbon sinks and climate change: forests in the fight against global warming. Edward Elgar Publishing.

Intergovernmental Panel on Climate Change (IPCC), ed. (2007), "Forestry", Climate Change 2007 - Mitigation of Climate Change: Working Group III contribution to the Fourth Assessment Report of the IPCC, Cambridge: Cambridge University Press, pp. 541–584.

Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience, 9(10), 737-742.

Lavery, T. J., Roudnew, B., Gill, P., Seymour, J., Seuront, L., Johnson, G., ...&Smetacek, V. (2010). Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proceedings of the Royal Society B: Biological Sciences, 277(1699), 3527-3531.

Lefebvre, D., Williams, A. G., Kirk, G. J., Paul, Burgess, J., Meersmans, J., ...& Smith, P. (2021). Assessing the carbon capture potential of a reforestation project. Scientific reports, 11(1), 19907.

Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M., &Poulter, B. (2019). Comment on “The global tree restoration potential”. Science, 366(6463), eaaz0388.

Lutz, S., Barnes, R., Kurvits, T., Lutz, S. J., & Martin, A. H. (2014). Fish carbon: exploring marine vertebrate carbon services.

McDermott, M. (2008). Can aerial reforestation help slow climate change. Discovery Project Earth Examines Re-engineering the Plantet’s Possibilities. Green Living, TreeHugger.

Montaigne, F. (2019). Why keeping mature forests intact is key to the climate fight, Yale Environment 360.

Moomaw, W. R., Masino, S. A., & Faison, E. K. (2019). Intact forests in the United States: Proforestation mitigates climate change and serves the greatest good. Frontiers in Forests and Global Change, 2, 27.

Nabuurs, G. J., Lindner, M., Verkerk, P. J., Gunia, K., Deda, P., Michalak, R., &Grassi, G. (2013). First signs of carbon sink saturation in European forest biomass. Nature Climate Change, 3(9), 792-796.

Nath, B. N., Khadge, N. H., Nabar, S., RaghuKumar, C., Ingole, B. S., Valsangkar, A. B., ...&Srinivas, K. (2012). Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment. Environmental monitoring and assessment, 184, 2829-2844.

Nave, L. E., Domke, G. M., Hofmeister, K. L., Mishra, U., Perry, C. H., Walters, B. F., & Swanston, C. W. (2018). Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proceedings of the National Academy of Sciences, 115(11), 2776-2781.

Paul, K. I., Polglase, P. J., Nyakuengama, J. G., &Khanna, P. K. (2002). Change in soil carbon following afforestation. Forest ecology and management, 168(1-3), 241-257.

Pershing, A. J., Christensen, L. B., Record, N. R., Sherwood, G. D., & Stetson, P. B. (2010). The impact of whaling on the ocean carbon cycle: why bigger was better. PloS one, 5(8), e12444.

Richards, M., Pogson, M., Dondini, M., Jones, E. O., Hastings, A., Henner, D. N., ...& Smith, P. (2017). High‐resolution spatial modelling of greenhouse gas emissions from land‐use change to energy crops in the United Kingdom. GCB Bioenergy, 9(3), 627-644.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., ...& Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. science, 305(5682), 367-371.

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ...&Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.

Sedjo, R., &Sohngen, B. (2012). Carbon sequestration in forests and soils.Annu. Rev. Resour. Econ., 4(1), 127-144.

Sha, Z., Bai, Y., Li, R., Lan, H., Zhang, X., Li, J., ...&Xie, Y. (2022). The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Communications Earth & Environment, 3(1), 8.

Shi, T., Zheng, X., Zhang, H., Wang, Q., &Zhong, X. (2021). Coral reefs: potential blue carbon sinks for climate change mitigation. Bulletin of Chinese Academy of Sciences (Chinese Version), 36(3), 270-278.

Snelgrove, P. V., Thrush, S. F., Wall, D. H., &Norkko, A. (2014). Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends in ecology & evolution, 29(7), 398-405.

Spawn, S. A., Sullivan, C. C., Lark, T. J., & Gibbs, H. K. (2020). Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data, 7(1), 112.

St. John, M. A., Borja, A., Chust, G., Heath, M., Grigorov, I., Mariani, P., ...& Santos, R. S. (2016). A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Frontiers in Marine Science, 3, 31.

Suess, E. (1980). Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature, 288(5788), 260-263.

Thomas, P. W., & Jump, A. S. (2023). Edible fungi crops through mycoforestry, potential for carbon negative food production and mitigation of food and forestry conflicts. Proceedings of the National Academy of Sciences, 120(12), e2220079120.

Thompson, K., Miller, K., Johnston, P., &Santillo, D. (2017). Storage of carbon by marine ecosystems and their contribution to climate change mitigation. Greenpeace Res. Lab. Tech. Rep, 3-2017.

Toyofuku, T., Matsuo, M. Y., De Nooijer, L. J., Nagai, Y., Kawada, S., Fujita, K., ...&Kitazato, H. (2017). Proton pumping accompanies calcification in foraminifera. Nature Communications, 8(1), 14145.

Turley, C. M., Keizer, T., Williamson, P., Gattuso, J. P., Ziveri, P., Munro, R., ...&Huelsenbeck, M. (2016). Hot, Sour and Breathless–Ocean under Stress. Hot, Sour and Breathless–Ocean under Stress.

Veldman, J. W., Aleman, J. C., Alvarado, S. T., Anderson, T. M., Archibald, S., Bond, W. J., ...&Zaloumis, N. P. (2019). Comment on “The global tree restoration potential”. Science, 366(6463), eaay7976.

Waring, B., Neumann, M., Prentice, I. C., Adams, M., Smith, P., &Siegert, M. (2020). Forests and decarbonization–roles of natural and planted forests.Frontiers in Forests and Global Change, 58.

Wilson, R. W., Millero, F. J., Taylor, J. R., Walsh, P. J., Christensen, V., Jennings, S., &Grosell, M. (2009). Contribution of fish to the marine inorganic carbon cycle. Science, 323(5912), 359-362.

Yang, Y., Tilman, D., Furey, G. et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity.Nat Commun 10, 718 (2019).https://doi.org/10.1038/s41467-019-08636-w

Zomer, R. J., Bossio, D. A., Sommer, R., &Verchot, L. V. (2017). Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, 7(1), 15554

Downloads

Published

2025-07-07

How to Cite

Shahnoor Khan, & Sharda Dhadse. (2025). Carbon sequestration by terrestrial and marine biodiversity- a tool for combating climate change. Sustainability and Biodiversity Conservation, 4(2), 69–88. https://doi.org/10.5281/zenodo.15623594