Genetic characterization of hepatitis B virus (S gene) among patients with/without SARS-CoV-2 in Iraq

Authors

  • Laith Al-Kaif Hammurabi College of Medicine, University of Babylon
  • Mohammad Abd-Kadhum Al-Saadi Department of Microbiology, College of Medicine, Babylon University, 51002 Hillah, Babylon, Iraq
  • Alaa H. Al-Charrakh Department of Microbiology, College of Medicine, Babylon University, 51002 Hillah, Babylon, Iraq

DOI:

https://doi.org/10.5281/zenodo.11527436

Keywords:

COVID-19 Ab, HBV, Nested PCR, SARS-CoV-2, S gene

Abstract

Hepatitis B virus (HBV) continues to be a global public health problem, especially following the spread of SARS-CoV-2 and the prevalence of hepatic manifestations of COVID-19 in individuals with HBV. The current work aims to investigate HBV genetic sequences by analysis of S genes of selected patients for HBV alone and HBV with SARS-CoV-2. One hundred forty-one hospitalized cases were divided into patients infected with HBV with/ without SARS-CoV-2 diagnosed by automatic fluorescent immunoassay system COVID-19 Ab (IgM/IgG). Next, genetic diagnosis of the S gene for both HBV alone and HBV and SARS-CoV-2 was carried out at ASCO Learning Center in Baghdad using the Nested Polymerase Chain Reaction technology by HBV DNA extraction and amplification to determine the sequence of nucleotide and to compare them with the international strains in the NCBI GenBank. 115 (1, 80, and 34) of the 141 HBV patients showed positive COVID-19 results for IgM, IgG, and IgM with IgG, respectively. 10 out of 22 samples were selected for genetic study of the S gene and were amplified by the nested polymerase reaction technique for genome (S gene), and 9 samples were registered in the genebank with the accession number: LC705440, LC705441, LC705442, LC705443, LC705444, LC705445, LC705446, LC705447, LC705448. According to the results of this research, some of the samples in this study were recorded globally for the first time genetically in patients infected with HBV and SARS-CoV-2. These data suggest that the S gene is still the most critical gene in controlling nucleic acids.

References

Abdul Amir, Y. F. (2018). Genetic polymorphisms of some interferons associated with chronic viral hepatitis B and C. Ph.D. A thesis. College of Medicine, Babylon University, Iraqi.

Akkaif, M. A., & Daud, N. A. A. (2022). Ethical considerations of the genetic testing for patients with cardiovascular disease. Malaysian Journal of Human Genetics, 3(1), 13-17.

Akkaif, M. A., Bitar, A. N., Al-Kaif, L. A., Daud, N. A. A., Sha’aban, A., Noor, D. A. M., . . . Abdul Wahab, M. J. (2022). The Management of Myocardial Injury Related to SARS-CoV-2 Pneumonia. Journal of Cardiovascular Development and Disease, 9(9), 307.

Akkaif, M. A., Daud, N. A. A., Noor, D. A. M., Sha'aban, A., Wahab, M. J. A., Sk Abdul Kader, M. A., & Ibrahim, B. (2023). Platelet reactivity index after treatment of clopidogrel versus ticagrelor based on CYP2C19 genotypes among patients undergoing percutaneous coronary intervention: results of a randomized study. European Heart Journal, 44(Supplement_1). doi:10.1093/eurheartj/ehac779.120

Akkaif, M. A., Daud, N. A. A., Sha’aban, A., Ng, M. L., Abdul Kader, M. A. S., Noor, D. A. M., & Ibrahim, B. (2021). The Role of Genetic Polymorphism and Other Factors on Clopidogrel Resistance (CR) in an Asian Population with Coronary Heart Disease (CHD). Molecules, 26(7), 1987.

Akkaif, M. A., Ng, M. L., SK Abdul Kader, M. A., Daud, N. A. A., Sha’aban, A., & Ibrahim, B. (2021). A review of the effects of ticagrelor on adenosine concentration and its clinical significance. Pharmacological Reports, 73(6), 1551-1564.

Akkaif, M. A., Sha’aban, A., Cesaro, A., Jaber, A. A. S., Vergara, A., Yunusa, I., . . . Al-Mansoub, M. A. (2022). The impact of SARS-CoV-2 treatment on the cardiovascular system: An updated review. Inflammopharmacology, 30(4), 1143-1151.

Akkaif, M. A., Sha’aban, A., Daud, N. A. A., Yunusa, I., Ng, M. L., SK Abdul Kader, M. A., . . . Ibrahim, B. (2021). Coronary Heart Disease (CHD) in Elderly Patients: Which Drug to Choose, Ticagrelor and Clopidogrel? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Cardiovascular Development and Disease, 8(10), 123.

Akkaif, M. A., Sha'aban, A., Daud, N. A. A., Ng, M. L., & Ibrahim, B. (2020). Investigate the Strategy of Using Pharmacogenetics and Pharmacometabonomics to the Personalization of Ticagrelor Antiplatelet Therapy. Systematic Reviews in Pharmacy, 11(9), 1100-1107.

Akkaif, M., Daud, N., Noor, D., Sha'aban, A., Sk Abdul Kader, M., Wahab, M., & Ibrahim, B. (2023). The use of ticagrelor versus clopidogrel in Malaysian patients with coronary artery disease undergoing percutaneous coronary intervention (PCI): Does the age tertile affect the platelet reactivity? European Heart Journal, 44(Supplement_1), ehac779. 122.

Akkaif, M., Sha'aban, A., Daud, N., Noor, D., Musa, N., Sk Abdul Kader, M., & Ibrahim, B. (2022). Fast and more affordable CYP2C19 LOF testing to personalized clopidogrel therapy. European Heart Journal, 43(Supplement_2), ehac544. 3025.

Al-Kaif, L. A., Al-Khafaji, Y. A., Shandaway, S. K., AL-Janabi, U. H., Kadhim, K. J., & Akkaif, M. A. (2023). Interleukin-8 and-17 levels in the sera of vaccinated subjects receiving a booster dose of measles virus: A follow-up study in Iraq. Medical Journal of Babylon, 20(2), 422-425.

Al-Sadeq, D. W., Taleb, S. A., Zaied, R. E., Fahad, S. M., Smatti, M. K., Rizeq, B. R., & Nasrallah, G. K. (2019). Hepatitis B virus molecular epidemiology, host-virus interaction, coinfection, and laboratory diagnosis in the MENA region: An update. Pathogens, 8(2).

Babiker, A., Jeudy, J., Kligerman, S., Khambaty, M., Shah, A., & Bagchi, S. (2017). Risk of cardiovascular disease due to chronic hepatitis C infection: a review. Journal of clinical and translational hepatology, 5(4), 343.

Kumar, A., Singh, R., Kaur, J., Pandey, S., Sharma, V., Thakur, L., Sati, S., Mani, S., Asthana, S., Sharma, T.K., Chaudhuri, S., Bhattacharyya, S. & Kumar, N. (2021). Wuhan to World: The COVID-19 Pandemic. Frontiers in Cellular and Infection Microbiology, 11:596201.

Liu, S., Zhou, B., Valdes, J. D., Sun, J., & Guo, H. (2019). Serum hepatitis B virus RNA: a new potential biomarker for chronic hepatitis B virus infection. Hepatology, 69(4), 1816-1827.

McArdle, A. J., Turkova, A., & Cunnington, A. J. (2018). When do co-infections matter? Current opinion in infectious diseases, 31(3), 209-215.

Purdy, M. A. (2007). Hepatitis B virus S gene escape mutants. Asian Journal of Transfusion Science, 1(2), 62–70.

Reddy, K. R. (2020). SARS-CoV-2 and the Liver: Considerations in Hepatitis B and Hepatitis C Infections. Clinical Liver Disease, 15(5): 191-194.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4), 420-422.‏

Zhang, J., Wang, X., Jia, X., & et al. (2020). Risk factors for disease severity, unimprovement, and mortality of COVID-19 patients in Wuhan, China. Clin Microbiol Infect.

Downloads

Published

2024-09-23

How to Cite

Al-Kaif, L., Al-Saadi, M. A.-K., & Al-Charrakh , A. H. (2024). Genetic characterization of hepatitis B virus (S gene) among patients with/without SARS-CoV-2 in Iraq. Sustainability and Biodiversity Conservation, 3(2), 1–17. https://doi.org/10.5281/zenodo.11527436