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Abstract 

Fall Armyworm (FAW) is among the major pests that destroy important food crops. With origins 

in the Americas, it was first detected in West Africa in 2016 and has since spread rapidly to other 

African countries and other continents. Studies have investigated FAW behavior and distribution, 

however, studies of how climate change may affect FAW suitability have been poorly explored. 

Reports on how FAW prediction is likely to spread in African countries that lack advanced 

technologies and practices to prevent the pest could be an approach that enables decision-makers 

to adapt and take control measures in areas at risk. In this research, we identified the climatic 

factors that influenced the incidence of FAW pest, and mapped and predicted its suitable habitat 

in the eastern African region. Findings revealed that five variables had the greatest impact on the 

performance of the model, among 19 bioclimatic variables. With a contribution of 37.8%, the 

annual precipitation had the most influence, followed by the annual mean temperature which 

contributed 13%. FAW potential distribution was also predicted under current climatic conditions, 

(1970–2000), and for future climate change scenarios, SSP1-2.3, SSP3–7.0, and SSP5-8.5, for the 

periods 2021–2040 (near term), 2041-2060 (mid-term) and 2061–2080 (long-term). This study 

showed that in the current climatic conditions, most of the area under study is suitable for FAW 

incidence and that in the future, this suitable habitat will increase northwards and decline in the 

southern region. Control and monitoring measures should be adopted to prevent the spread and 

excess damage of the FAW pest in the eastern Africa region. Studies utilizing different climate 

models, SSP scenarios, and different periods should be the focus of future research. Understanding 
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additional non-climatic elements that affect the growth, development, and distribution of FAW 

also needs more research. 

Keywords: Climate change, Maxent, Shared Socioeconomic-Pathways, Species Distribution 

Models  

Introduction  
The impact of climate change on the agricultural sector is a global concern. Unfavorable climates 

exacerbate the interaction between plants, pathogens, and pests, as they inform the life cycle of 

pathogens and pests, the ability to cause disease, including, the colonization of new environments 

and hosts. This also applies to host plants. Abiotic factors such as extreme temperatures, 

precipitation, wind, and drought further render plants more vulnerable to pests and pathogens. For 

example, Agrios (2005) positioned temperature and moisture as significant environmental factors 

that affect the occurrence and development of various infectious plant diseases. With an 

unprecedented future climate predicted to be characterized by increased warming, even under 

prescribed climate mitigation scenarios, there is a need to continuously understand how climate 

change will impact plant-pathogen/pest dynamics. Predicting where the latter will exist is the first 

important step toward putting in place adequate early preparedness strategies. The effects of 

climate change on plant diseases and how to manage these diseases in a changing climate are 

gaining interest within the scientific community. However, few evaluations exist for certain 

countries, regions, crops, and specific agronomic pests/pathogens/viruses with a notable impact on 

food security, and nutrition, (Das et al., 2016). 

This study focuses therefore on Spodoptera frugiperda (Fall armyworm - FAW) pest which has 

recently become a concern in East Africa, especially in the agriculture sector. FAW, named the 

hungry caterpillar, is a moth, with origins, in the Americas (Day et al., 2017). FAW caterpillars 

are known to be serious pests of cereals and other grasses. The pest is postulated to have the ability 

to feed on 186 plant species, many of which are important staple crops (Early et al., 2018). Maize 

is the main crop affected by FAW. However, its polyphagous ability put at risk other important 

food crops such as rice, sorghum, sugarcane, beet, tomato, potato, cotton, and pasture grass (Early 

et al., 2018; Uzayisenga et al., 2018). FAW can cause extreme damage in plants, with yield losses 

of up to 73% reported (Hruska & Gould, 1997). According to Baudron et al. (2019), a 54% 

infestation of maize by FAW could translate to eventual yield losses of about 12%. This 

subsequently results in huge losses to governments. For example, about 40% of maize yield is lost 

in Honduras and 72% in Argentina due to FAW (Murúa et al., 2006; Wyckhuys & O’Neil, 2006).  

https://www.zotero.org/google-docs/?AXeaEQ
https://www.zotero.org/google-docs/?Gw2Jhz
https://www.zotero.org/google-docs/?ohS7fm
https://www.zotero.org/google-docs/?ElSotd
https://www.zotero.org/google-docs/?VBQuA8
https://www.zotero.org/google-docs/?VBQuA8
https://www.zotero.org/google-docs/?HBprp9
https://www.zotero.org/google-docs/?SXTRwt
https://www.zotero.org/google-docs/?SEPcvO
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FAW was first observed on the African continent in Western Africa (Nigeria, São Tomé, Benin, 

and Togo) in 2016. It then quickly spread to other countries, including Eastern Africa (Goergen et 

al., 2016). Its rapid spread and colonization success has been attributed to its ability to migrate 

over long distances, infest a diversity of crops, and reproduce continuously in areas with suitable 

climate conditions (Day et al., 2017; Huesing et al., 2018). Maize, the most-grown crop on the 

African continent and a staple for more than half of the African population remains the most 

affected crop (Day et al., 2017). Yield damages of about 20% to 50%, which amounts to about 

USD ($) 2.5 - 6 billion in annual losses have been reported in Africa. This is especially true in the 

absence of control measures. According to Goergen et al. (2016), most FAW damage to maize 

occurs in tropical regions with optimal conditions that allow continuous reproduction. In Kenya, 

an estimated 1 million tonnes of the country's maize is destroyed by the pest annually (De Groote 

et al., 2020). By 2018, FAW had ravaged around 15,699 hectares of farmland, a quarter of the 

country’s total area of 63,499 hectares of maize plantations in Rwanda (Hanyurwimfura et al., 

2018). In 2017, national estimates mean loss of maize in Zambia were 40% and 45% in Ghana 

(Day et al., 2017). Zimbabwe’s crop losses to FAW were estimated at 11.6% in 2018 (Baudron et 

al., 2019). Overall, in 2017, already infested African countries losses were estimated to be 

approximately $13 383 million (Day et al., 2017). In August 2017, 28 African countries had 

already observed and confirmed the presence of FAW (Day et al., 2017). Currently, about 44 

African countries have reported the presence of FAW (Prasanna et al., 2018; Rwomushana, 2019). 

Climatic conditions such as temperature, and precipitation can directly influence insect invasion, 

distribution, and spread (Bale et al., 2002). Species Distribution Models (SDMs) and mapping 

tools have been used to assess climate factors that affect FAW’s distribution. Early et al. (2018) 

utilized an ensemble of SDMs to forecast FAW global extent invasion under the current climatic 

scenario while Cokola et al. (2020) used MaxEnt to infer bioclimatic regions and climate variables 

that influence FAW’s distribution in South Kivu, eastern Democratic Republic of Congo. Zacarias 

(2020) and Ramasamy (2022) mapped the current FAW suitable habitat and forecasted its potential 

future suitable habitat using SDMs. Niassy et al. (2021) studied the impact of rainfall patterns on 

FAW incidence in East Africa. An ongoing study (Yocgo et al., unpublished) is investigating FAW 

habitats under future climate scenarios. Such kinds of studies need to be downscaled to specific 

regions especially regions that have already been invaded by the FAW pest. 

https://www.zotero.org/google-docs/?l7Akj5
https://www.zotero.org/google-docs/?l7Akj5
https://www.zotero.org/google-docs/?Jkeffc
https://www.zotero.org/google-docs/?qvaSJn
https://www.zotero.org/google-docs/?qvaSJn
https://www.zotero.org/google-docs/?cNHuq1
https://www.zotero.org/google-docs/?cNHuq1
https://www.zotero.org/google-docs/?VJ3hwP
https://www.zotero.org/google-docs/?VJ3hwP
https://www.zotero.org/google-docs/?5sXEdg
https://www.zotero.org/google-docs/?pP7SjL
https://www.zotero.org/google-docs/?broken=ofDluI
https://www.zotero.org/google-docs/?4KJ7hK
https://www.zotero.org/google-docs/?OZjEl5
https://www.zotero.org/google-docs/?Ymks9u
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The need for more localized studies, using different climate models, under recently defined climate 

scenarios, and recent FAW data sets, can sharpen decision-making. This therefore prompted this 

investigation. Eastern Africa was selected as a region of choice in this paper given the most recent 

occurrences of the pests in the region. The objective of the study is therefore, to assess climate 

variables that influence FAW distribution in Eastern Africa, and predict its current and future 

suitable habitats using Maxent and newly developed climate models from the Coupled Model 

Intercomparison Project 6 (CMIP6). Given that different models have been shown to have different 

sensitivities to climate change, we compared outputs from the most sensitive model CanEMS5, 

and the least sensitive INM-CM5-0.  

Material and methods 

Description of the study area 

Our study is limited to eleven Eastern African countries, specifically Tanzania, Burundi, Rwanda, 

Uganda, Kenya, Somalia, Ethiopia, Djibouti, Eritrea, South Sudan, and Sudan (Chamberlin, 2018). 

The region's highest altitude point is 5,895 meters above sea level on the peak of Mount 

Kilimanjaro (Tanzania) and the lowest point is 153 meters below sea level at the bottom of Lake 

Assal in Djibouti (Chamberlin, 2018). The region's complex topography which is different from 

the rest of Africa, is characterized by a coastal plain in the east and mostly highlands from the 

north to south, detached between Kenya and Ethiopia highlands by the Turkana gap. This 

landscape greatly affects low-level atmospheric circulation and moisture movement, creating a 

wide variety of climatic conditions, which in turn influences a variety of vegetation landscapes, 

biodiversity, and anthropogenic activities (Chamberlin, 2018; Yang et al., 2015). The recorded 

coolest place in East Africa is at Mount Kilimanjaro summit with an annual mean temperature of 

-7.1°C, and the hottest place is at Dallol, Afar Depression (North Ethiopia) with an annual 

temperature of 34.6°C. The peak solar radiation (292 W.m-2) is found in northern Somalia and the 

lowest (183 W.m-2) is found in Uganda near Mt. Ruwenzori (Chamberlin, 2018). 

Occurrence data and data cleaning 

The occurrence data was obtained from the Centre for Agriculture and Bioscience International 

(CABI; (https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.29810), and the Hand 

in Hand platform (https://data.apps.fao.org/), a geospatial data repository of the Food and 

Agriculture Organization (FAO) of the United Nations. Additional FAW occurrence data were 

obtained from the literature (Niassy et al., 2021).  This covered specifically, Ethiopia, Kenya, 

Uganda, Tanzania, Rwanda, and Burundi. After data cleaning (removing duplicates) and cropping 

https://www.zotero.org/google-docs/?F9X8X6
https://www.zotero.org/google-docs/?broken=EiIYaD
https://www.zotero.org/google-docs/?gphmb5
https://www.zotero.org/google-docs/?broken=C8qXDz
https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.29810
https://data.apps.fao.org/
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to the Eastern Africa extent, our final dataset comprised 2152 points covering the period 2017 - 

2021. Data cleaning was carried out in the R platform (R version 4.1.3 Development Core Team, 

2022). 

Climate data 

The climatic data used in this study was downloaded from WorldClim 

(https://worldclim.org/data/index.html), a database of historical (current) and future gridded 

weather and climate data. These data sets have been used in various SDM studies, including studies 

on FAW (Baloch et al., 2020; Çoban et al., 2020; Cokola et al., 2020; Ramasamy et al., 2022; Tang 

et al., 2019). In our study, we used all 19 bioclimatic variables (Table 1). 

Table 1. Bioclimatic variables derived from Worldclim were used to assess suitable habitats for the FAW 

pest in the Eastern Africa region.  

Code Bioclimatic variables Unit 

Bio1 Annual Mean Temperature °C 

Bio2 Mean diurnal range (mean of monthly (max temp-min temp)) °C 

Bio3 Isothermality (BIO2/BIO7) (˟100) - 

Bio4 Temperature Seasonality (standard deviation ˟100) C of V 

Bio5 Max Temperature of the Warmest Month °C 

Bio6 Min Temperature of the Coldest Month °C 

Bio7 Temperature Annual Range (BIO5-BIO6) °C 

Bio 8 Mean Temperature of the Wettest Quarter °C 

Bio 9 Mean Temperature of the Driest Quarter °C 

Bio 10 The mean temperature of the warmest quarter °C 

Bio 11 The mean temperature of the coldest quarter °C 

Bio 12 Annual precipitation mm 

Bio 13 Precipitation of the wettest month mm 

Bio 14 Precipitation of the driest month mm 

Bio 15 Precipitation seasonality (Coefficient of Variation)  

Bio 16 Precipitation of the wettest quarter mm 

Bio 17 Precipitation of the driest quarter mm 

Bio 18 Precipitation of the warmest quarter mm 

Bio 19 Precipitation of the coldest quarter mm 

https://worldclim.org/data/index.html
https://www.zotero.org/google-docs/?1GYWIq
https://www.zotero.org/google-docs/?1GYWIq
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To evaluate the impact of climate change on the future suitability of the FAW pest in East Africa, 

three Shared socioeconomic pathway (SSP) scenarios were employed. These include SSP1-2.6 

which represents an optimistic scenario, SSP3-7.0 represents the middle case scenario, and SSP5-

8.5 which represents a pessimistic scenario. The three SSPs originating from the CMIP6 project 

were obtained for two GCMs. These GCMs include the Canadian Earth System Model version 5 

(CanESM5) (Swart et al., 2019) and the Institute for Numerical Mathematics- Climate Model 5 

(INM-CM5-0) (Volodin et al., 2019). Periods covering 20-year spans for the near term (2021-

2040), mid-term (2041-2060), and long-term (2061-2080) were used in this study. All climate 

data were obtained at a 30-second resolution (∼ 1km).  

Modeling procedure 

The MaxEnt model (Phillips et al., 2017) was used in this study. MaxEnt has an advantage over 

other SDMs due to its high accuracy and ability to perform well with small sample sizes (Phillips 

et al., 2006). We accessed the MaxEnt model in Rstudio (R version 4.2.2 Development Core Team, 

2022). Maxent has a built-in function called Jackknife that analyzes which environmental variables 

contribute to the model’s performance. The Maxent model outputs were exported as .tiff files and 

then imported into ArcGIS 10.4 (https://desktop.arcgis.com/en/arcmap/) for further analysis and 

visualization. Analysis in ArcGIS consisted of reclassification of these outputs using the 

classification package. Taking reference from (Qin et al., 2017; Yang et al., 2013), 10 classes were 

generated to represent FAW suitability classes. 0-0.1 (unsuitable), 0.1-0.2 (low suitable lower), 

0.2-0.3 (low suitable middle),0.3- 0.4 (low suitable upper), 0.4-0.5 (moderate suitable lower), 0.5-

0.6 (moderate suitable upper), 0.6-0.7 (good suitable lower), 0.7-0.8 (good suitable upper), 0.8-0.9 

(highly suitable lower) and 0.9-1 (highly suitable upper). 

Model Evaluation 

Model validation is a crucial stage in the modeling process to ensure that the model results are 

accurate. To test the accuracy of the Maxent model, our data set was split into training (80%) and 

test (20%) data set. The 80% data set was used to calibrate the model, and the remaining 20% was 

used to validate the model. In this study, the Area Under the Curve (AUC) threshold, a value of 

the Relative Operating Characteristics (ROC) was used as the evaluation metric. AUC values of 

0.5-0.7 are considered low and represent poor model performance. Values of 0.7 - 0.9 are 

considered moderate, while values above 0.9 represent excellent model performance. The more 

https://www.zotero.org/google-docs/?HTJqFH
https://www.zotero.org/google-docs/?NICEjB
https://www.zotero.org/google-docs/?tXdJXF
https://www.zotero.org/google-docs/?tXdJXF
https://www.zotero.org/google-docs/?gMI29I
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the ROC curve follows the y-axis and the larger the AUC, the more the model is considered to be 

accurate (Bowers & Zhou, 2019). 

Results 

Maxent model performance 

After calibrating the Maxent model with the 80% training dataset and all 19 bioclim variables, the 

model evaluation output using the 20% test dataset produced a high AUC value of 0.942 (Figure 

1). This output, therefore, allowed us to use the Maxent model for other downstream projections 

in this study.   

 

Figure 1. ROC plot of the Maxent model evaluation results using 20% FAW occurrence data for 

Eastern Africa as the test data set. 

Bioclimatic variables contribution to FAW suitability 

The Maxent built-in Jackknife test results obtained as a quantitative output from the calibration 

run of the 80% training dataset depict how each of the 19 variables contributed to the model’s 

performance (Figure 2). We found that bio12 (annual precipitation) contributed the most to the 

performance (37.8%). This depicts the tune to which annual precipitation as a climate variable 

impacts the model's performance. The second highest contributor was bio1 (annual mean 

temperature) with a contribution of 13%. This was followed by bio14 (precipitation of the driest 

month), bio18 (precipitation of the warmest quarter), and bio15 (precipitation seasonality). They 

contributed 9%, 8.1%, and 7.9%, respectively. 

https://www.zotero.org/google-docs/?sxZ0o9
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Figure 2. Contribution of the 19 bioclimatic variables to the maxent model performance using 

20% FAW occurrence data for Eastern Africa as the training data set. 

Current FAW suitable habitats in East Africa 

The FAW suitability map under the current climatic conditions (1970-2000) in East Africa, (Figure 

4) has a large coverage of unsuitable to most suitable habitats for FAW with a minute coverage of 

the highly suitable class (0.9 - 1). This highly suitable class (black and red) can be seen in the 

northeastern part of Tanzania, on its border with Kenya (Figure. 4, black circle). Areas that are 

still unsuitable for FAW are found in the northern parts of Sudan. In contrast, good suitable classes 

are found in a large part of western to central Ethiopia, and along the borders of Kenya/Tanzania, 

Kenya/Uganda, and the eastern corridors of Rwanda and Burundi. 

 

Figure 3. Map showing the current distribution of FAW in Eastern Africa using the MaxEnt model. 

Occurrence records were obtained from FAO, CABI, and Niassy et al. (2021). 

https://www.zotero.org/google-docs/?2H7cxr
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Figure 4. Current suitable habitat classes for FAW in the Eastern Africa region. The zone with the highly 

suitable area is highlighted with a black circle. 

Future suitable habitat for FAW for the SSP1-2.6 scenario 

Our results show a decline in FAW suitability habitats in the southern parts of Eastern Africa, in 

the northern parts of the region, occupied by Sudan, there was the appearance of new suitable 

habitats. Even Ethiopia, which had the most coverage in good suitable habitats in the current 

climatic conditions, was losing most of the upper limits of its good suitable habitat. With the two 

models, we found a visible difference in their projections with INM-CM5-0 projecting zones of 

highly suitable habitats in south-western Kenya, and southern Eritrea, whereas, with CanESM5, 

these zones project similar suitable class as the current climatic conditions.  
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Figure 5. FAW suitable habitat In Eastern Africa in the SSP1-2.6 scenario based on CanESM5 and INM-

CM5-0 global circulation models from CMIP6: for (A) near term 2021-2040, (B) mid-term 2041-2060 

and (C) long term 2061-2080. 

Future suitable habitat for FAW for the SSP3-7.0 scenario 

The reduced habitat suitability in the southern parts of Eastern Africa persists in this scenario. In 

contrast, north of Eastern Africa, Sudan’s central to western areas will experience increased 

suitability to FAW, with CanESM5, parts of Sudan will reach the lower limit of the high suitability 

habitat in the long term. INM-CM5-0 projects a more northward expansion of FAW suitability. 

The suitable habitats will continue to decline, as well as the zones along the boundaries of South 
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Sudan/Sudan, at least in the long term, as projected by both GCMs. Also, both GCMs project a 

decline in FAW suitability over time in southern Uganda, and western Tanzania.  

 

 

 

Figure 6. FAW suitable habitat In Eastern Africa in the SSP3-7.0 scenario based on CanESM5 and INM-

CM5-0 global circulation models from CMIP6: for (A) near term 2021-2040, (B) mid-term 2041-2060 

and (C) long term 2061-2080. 

Future suitable habitat for FAW for the 5-8.5 scenario  

While the southern parts of East Africa, specifically Tanzania and Uganda will continue to become 

less suitable to FAW, in the north, represented by Sudan, parts of the country (central-west and 

north) will continue to experience both an increase and intensification of its suitable habitats. With 

CanESM5, a lower limit of the highly suitable habitat is projected to a large extent in this region, 

with the possibility of reaching the upper limit of the highly suitable class in the long term, INM-
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CM5-0 projects loss of suitability in that region. However, it also projects a lower limit of the 

highly suitable habitat in central Ethiopia and southern Eritrea. 

 

 

 

Figure 7. FAW suitable habitat In Eastern Africa in the SSP5-8.5 scenario based on CanESM5 and INM-

CM5-0 global circulation models from CMIP6: for (A) near term 2021-2040, (B) mid-term 2041-2060 

and (C) long term 2061-2080. 

Discussion 
Our studies indicate that more than 75% of the Maxent model's overall performance was 

influenced by just five variables, of which four are related to precipitation and one is related to 

temperature. The variables are the annual precipitation, annual mean temperature, precipitation of 

the driest month, precipitation of the warmest quarter, and the precipitation seasonality It can be 

said that these variables are the major climatic contributors to FAW suitability and distribution in 

the Eastern Africa region. This to an extent is consistent with published work by Ramasamy et al. 
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(2022) who conducted a global study on the future suitability of FAW. Our study implicates annual 

precipitation and annual mean temperature as the two most important contributors to FAW’s 

distribution. While the percentage contribution of bio12 is slightly comparable between the two 

studies (~ 37% and ~ 42%), that from bio1 is not. The value (22%) found by Ramasamy et al. 

(2022) is slightly higher than the percentage contribution of this variable in this study. Zacarias 

(2020) study of global FAW suitability instead positioned annual mean temperature (bio1;19.2%), 

and precipitation of the driest quarter (bio17;17.3%) as the highest bioclim contributors. Bio12 

contributed 11.5% in their study. Cokola et al. (2020) projected FAW's current suitable habitat in 

South Kivu, DRC. Consistent with the above authors, bio12 was the highest contributor. From 

these studies in which Africa was involved to some extent, we observe the important role of bio12 

(annual precipitation) in the distribution of FAW. Current studies highlighted that although FAW 

has a broad habitat niche, it will most likely be established in regions with similar climate 

conditions as its native habitats (Cokola et al., 2020). High precipitation is important in growth 

and development (Wu et al., 2019).   

A second important observation from this study in the current climate condition is the 

concentration of FAW-suitable habitats in Uganda, Rwanda, Burundi, southwestern Kenya, 

regions in central and northern Tanzania, central to northern Ethiopia, and southern Eritrea. This 

study also shows that in the future, the northern parts of Eastern African countries will become a 

hotspot for FAW, while the southern parts will become cold spots. Such a northward shift in 

FAW’s suitability habitat has been highlighted before (Zacarias, 2022). This was observed in the 

authors’ FAW suitability study, using the previous CMIP5 scenario. Similarly, to this study, they 

also found increased suitability habitats in parts of Sudan, and decline or no changes in suitability 

habitats in Ethiopia, Tanzania, Kenya, and other parts of Eastern Africa. Similar findings have also 

been recently projected by Ramasamy et al. (2022) on this possible northward shift in habitat 

suitability for FAW. However, they found an expansion in suitable areas south of Sudan and parts 

of Ethiopia, that spread throughout the country, which was not the case in this study. This was in 

spite of the fact that these latter authors used the new CMIP6 scenarios, although different GCMs. 

Irrespective of these reduced suitable habitats found in this study, the region will continue to be 

vulnerable to the year-round FAW population establishment (Timilsena et al., 2022).  

A third important output from our study is that models with different climate sensitivities may 

over-project or under-project future suitable habitats. In this study, CanESM5 with a higher climate 

https://www.zotero.org/google-docs/?HGlK9S
https://www.zotero.org/google-docs/?gAyQc2
https://www.zotero.org/google-docs/?Fxx1fv
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sensitivity clearly showed distinct projections from INM-CM5-0 which has the least climate 

sensitivity within CMIP6. There remains a dearth of information in understanding the influence of 

these sensitivities in suitability studies more so because existing studies have not made it a focus 

of their work (Abdel-Rahman et al., 2023; Timilsena et al., 2022; Zacarias, 2020). In-depth 

research is, therefore, needed at both global and localized scales to enlighten how climate 

sensitivities affect modeling outputs. Our findings remain important in allowing affected regions 

to understand the upper and lower boundaries of their vulnerability to this pest for early 

intervention. 

Conclusions 

In this study, mapping and forecasting of fall armyworm pests in Eastern Africa was undertaken 

using a recent FAW data set. The climate variables influencing armyworm (FAW) pest distribution 

were analyzed, while its suitability in the Eastern African region was mapped. New CMIP6 data 

and MaxEnt model were also used for the first time to predict suitable habitats in the region, and 

further comparing outputs from two GCMs with high and low climate sensitivities. MaxEnt model 

evaluation produced a high AUC value of 0.942, which allowed us to use this model to infer 

climate variables that influence FAW in the region. The annual precipitation and annual mean 

temperature were the two highest contributors to the geographical suitability of the FAW pest.  

The current climatic conditions favor FAW suitability mostly in the countries in the southern and 

central regions of our study area. The northern region and the horn of Africa are less and unsuitable 

for FAW occurrence. By considering SSPs scenarios - SSP1-2.3, SSP3-7.0, and SSP5-8.5 - 

representing optimistic, moderate, and pessimistic emission scenarios and global warming, 

respectively, it was clear that in the pessimistic scenario, the spread of FAW will be pronounced 

in certain eastern African countries, especially Sudan and Ethiopia. Areas like Sudan that were 

climatically unsuitable to FAW occurrence will become suitable, and be highly vulnerable to this 

pest. This might tend to promote the spread of the pest into neighboring countries through the long-

distance flight potential of the pest over high altitudes, and cross-border activities with neighboring 

countries. This study therefore recommends that existing prevention measures should be strictly 

enforced to mitigate both the spread of the pest and global warming. Additionally, new methods 

should also be investigated to prevent further spread and contain the pest. Given that the pest has 

migrated from across borders, stricter border control measures in the transportation of biological 

materials should be enforced to limit its entry via such routes. Control and monitoring measures 
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should be adopted to prevent the spread and excess damage of the FAW pest in the eastern Africa 

region.  
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